

実務に役立つ分析コンペ

なぜ発表者が分析コンペで機械学習に取り組むか

2022/04/28 株式会社 日立製作所 Lumada Data Science Lab. 諸橋 政幸

自己紹介

 株式会社 日立製作所 Lumada Data Science Lab. データサイエンス・エキスパート

- 1999年に日立製作所へ入社。
- 2012年にデータ分析部署(その年度に新設)に異動し、データ分析を使って顧客課題を解決する業務に従事。金融・小売など多種多様な分野のプロジェクトを担当 分析経験ゼロからスタートし、約10年間の実務経験を経て今に至る。
- 分析コンペ歴は約6年。Kaggle Master。

ところで分析コンペって知ってますか?

学生や若者がやっているもの

• 興味はあるけど参加の敷居が高そう

そもそも聞いたことがない

1. コンペとの出会い

ゼロからの分析人生スタート

1999年入社して情報セキュリティ業務(8年) > 金融事業部(4年)

- 2012年に現在のデータ分析/AI推進部署へ異動 当時はビッグデータブーム真っ最中
- その後もAI、ディープラーニングと 名称を変えつつも 「データ利活用」の機運が続く
- 一見花形部署だけども、 自身は当時30後半かつ未経験の分野、、、

こんな仕事してます

ざっくり言うと、 顧客の課題をデータを使って解決する仕事

- 顧客が解決したい課題の明確化
- どんなデータを活用してどうやって解決するのかを具体化
- (大規模)データの前処理加工
- データの集計・可視化
- 機械学習やディープラーニングを用いたモデル学習
- 報告書作成
- 顧客との打ち合わせ・報告

スキルセットの多さに絶望

大きくは3つのスキル

ビジネス カ (business problem solving) サイエンス カ (data (data science) engineering) データサイニ 意味のあるが ようにし、

課題背景を理解した上で、 ビジネス課題を整理し、 解決する力

各スキルの広さと深さ

スキルチェックリスト 2021年版 <ビジネスカ>

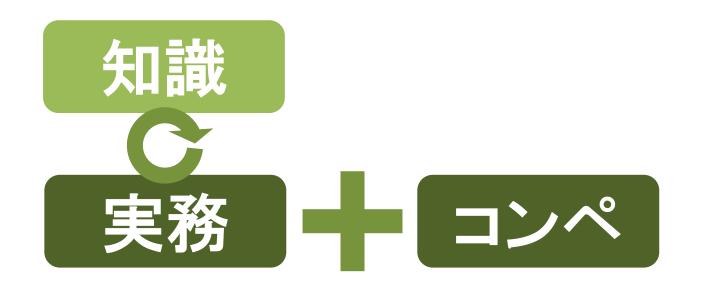
	NO	SubNo	スキルカテゴリ	スキルレベル	サブカテゴリ	チェック項目	_
- - -	1	1	行動規範	*	ビジネスマインド	ビジネスにおける「論理とデータの重要性」を認識し、分析的でデータドリブンな考え方に基づき行動できる	
	2	2	行動規範	*	ビジネスマインド	「目的やゴールの設定がないままデータを分析しても、意味合いが出ない」ことを理解している	+
	3	3	行動規範	*	ビジネスマインド	課題や仮説を言語化することの重要性を理解している	\top
	4	4	行動規範	*	ビジネスマインド	現場に出向いてヒアリングするなど、一次情報に接することの重要性を理解している	\top
	5	5	行動規範	**	ビジネスマインド	社会における変化や技術の進化など、外的要因による分析プロジェクトへの影響をある程度見通し、柔軟に行動できる	\blacksquare
	6	6	行動規範	**	ビジネスマインド	ビジネスではスピード感がより重要であることを認識し、時間と情報が限られた状況下でも、言わば「ザックリ感」を 持って素早く意思決定を行うことができる	
	7	7	行動規範	**	ビジネスマインド	作業ありきではなく、本質的な問題(イシュー)ありきで行動できる	*
	8	8	行動規範	**	ビジネスマインド	分析で価値ある結果を出すためには、UばUば仮説検証の繰り返Uが必要であることを理解U、粘り強くタスクを 完遂できる	&
	9	9	行動規範	***	ビジネスマインド	プロフェッショナルとして、作業量ではなく生み出す価値視点で常に判断・行動でき、真に価値あるアウトブットを生み出すことにコミットできる	<u>*</u>
	10	10	行動規範	*	データ・AI倫理	データを取り扱う人間として相応しい倫理を身に着けている(データのねつ造、改ざん、盗用を行わないなど)	1
	11	11	行動規範	*	データ・AI倫理	データ、AI、機械学習の意図的な悪用(フェイクニュース、Botの悪用など)があり得ることを勘案し、技術に関する適切な知識と倫理を身につけている	-
	12	12	行動規範	**	データ・AI倫理	AI・機械学習がもたらす現在の倫理課題を説明できる(ディープフェイクによるプライバシーの侵害、バイアスによる人種差別、学習済みモデルのリバースエンジニアリングによる知的財産権の侵害など)	_
	13	13	行動規範	***	データ・AI倫理	会社や組織全体におけるデータの取り扱いに関する倫理を維持・向上させるために、必要な制度や仕組みを策定し、その運営を主導することができる	
	14	14	行動規範	*	コンプライアンス	直近の個人情報に関する法令(個人情報保護法、EU一般データ保護規則:GDPRなど)や、匿名加工情報の概要を理解し、守るべきポイントを説明できる	ĮĘ.
	4 =	1	√ <u>-</u> ≝++β&¢		コヽ ポー ノラヽ コ	担当するビジネスや業界に関係する直近の法令・ガイドラインを理解しており、データの保持期間や運用ルールに 特徴の協変を理解し、するへきハイントを説明できる	情
	-	<u>- - </u>	√ ─至++□左左		コンポーノコンコ	担当するビジネスや業界に関係する直近の法令・ガイドラインを理解しており、データの保持期間や運用ルールに	<u> </u>
		4.5	4 F	365	コンプー ノコン	担当するビジネスや業界に関係する直近の法令・ガイドラインを理解しており、データの保持期間や運用ルー	-JNC

情報処理、人工知 能、統計学などの 情報科学系の知恵 を理解し、使う力

とにかく独学の日々

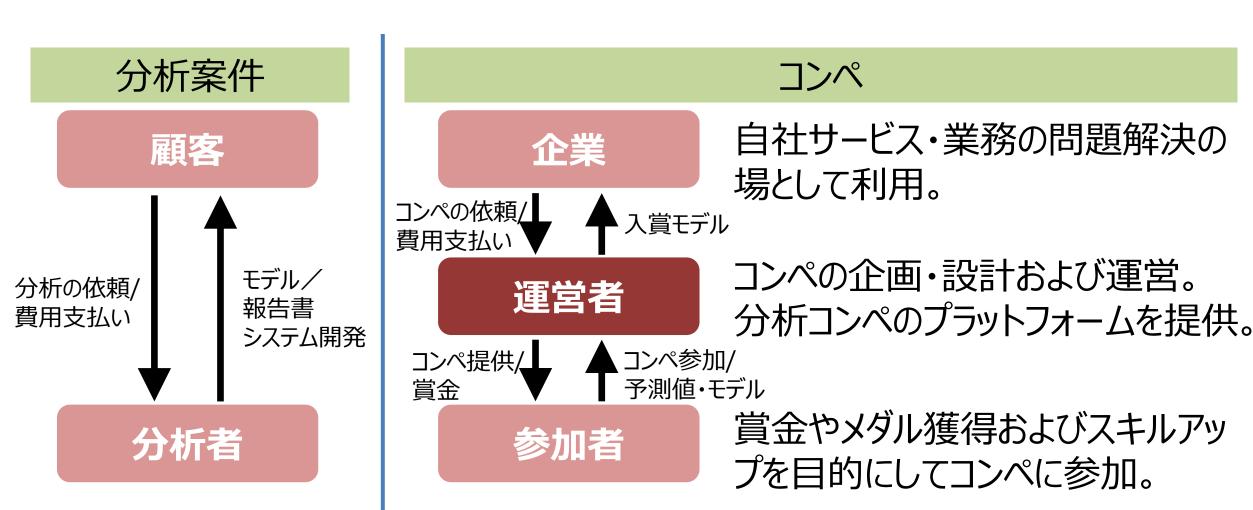
とりあえず書籍で勉強の日々(100冊以上、本だらけ)

何が正解か分からないまま現場での実務


いっそのこと大学で学び直そうか。。。

取り組み方に気付く

- 知ってるだけでは結局は不十分 磨いてはじめて生きたスキルとなる
- 経験から得てしまうのが最短ルート それが実務と『コンペ』



2. 分析コンペとは

分析コンペのプラットフォーム

企業とデータサイエンティストをつなぐ仕組み

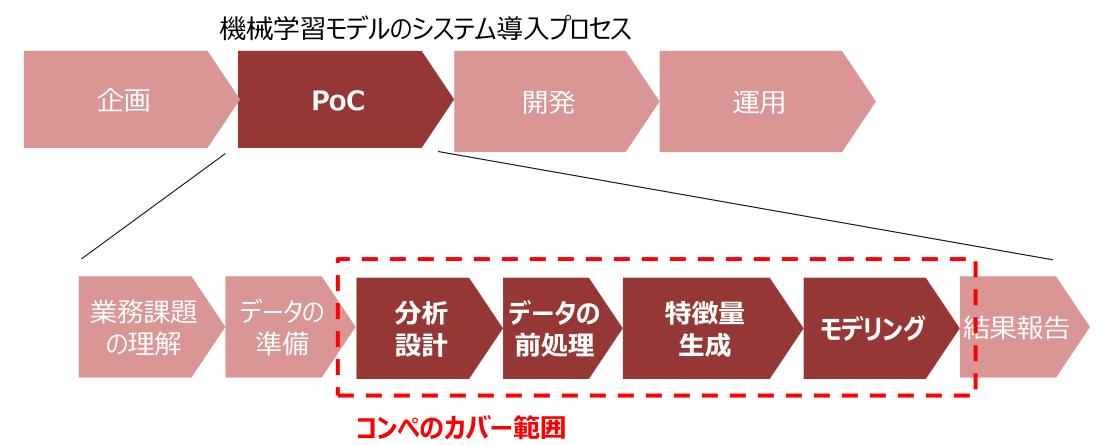
国内外のコンペサイト

- 日本国内にも有用なサイトがいくつかある
- 世界的にはKaggleが規模・知名度ともにトップ
- 基本的には予測精度を競う
 - 店舗別の商品の販売個数を予測
 - 画像の分類ラベルを予測

コンヘサイト	URL
Kaggle	https://www.kaggle.com/
SIGNATE	https://signate.jp/
Nishika	https://www.nishika.com/
ProbSpace	https://comp.probspace.com/
atmaCup	https://www.guruguru.science/

- 参加者のモチベーションは
 - 順位、メダル、称号 ★ゲーム性が高い
 - スキルアップ、力試し
 - 趣味として

コンペのカバー範囲:技術



- 教師あり学習
- 強化学習
- ディープラーニング
 - 画像分類、領域検出、セマンティックセグメンテーション
 - 自然言語の分類
 - 音声分類
- 最適化問題

コンペのカバー範囲:業務プロセス

実務の一部。しかしスキルが問われる重要なタスク。

3. 得られたこと

コンペで得られたこと

① 分析設計・ベースライン作成の高速化

②技術の使いこなしスキル

③新しい技術を知るチャネル

① 分析設計・ベースライン作成の高速化

- 多くの経験からコードへの落とし込みが早くなる
 - ビジネス課題 ⇒ 分析設計 ⇒ ベースライン
 - データ利活用で解ける課題へ誘導

- 検証の仕組みの重要性を体感
 - 手元のスコアと、リーダーボードのスコアのギャップ
 - シェイクダウンなどの失敗経験を実務へ活かす

② 技術の使いこなしスキル

- 分析にはライブラリや技術がたくさんある
 - LightGBM, tensorflow, torch, BERT,,, etc.
 - チューニングスキルが必要、未経験だと学習コストが必要
 - 多くのタスクで多くのライブラリ利用経験を持つべき

- 知っている << 使ったことがある
 - 理論は大事だが、極端に言うと実践は理論を上回る

- 経験に裏付けされた技術の取捨選択
 - 技術の有用性・限界を知っているからこその適切な分析設計へ

③ 新しい技術を知るチャネル

- 新しい技術を知る/試すチャンス
 - コンペ駆動型の勉強法
 - コンペで使ってみて本当に役立つかを判断できる

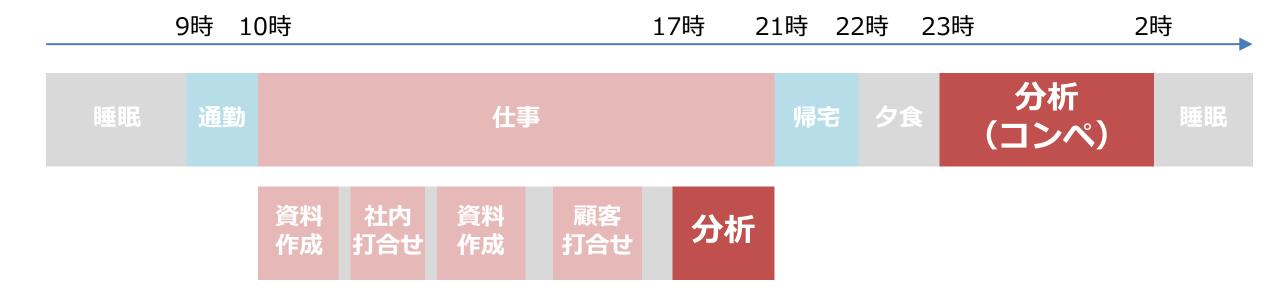
- コンペから得た人脈
 - チームを組めるので会社や国の枠を超えた人脈が出来る
 - そこから新しい技術やノウハウを知ることができる

4. 私の活用の仕方

こんな感じで取り組んでます

• まず学習目的を定める

• 振り返りは大事


- 仕事ではないので 楽しいと思うコンペを選ぶ
- メダルや順位は気にしない

1. 学習目的の設定 2. コンペの選択 3. 分析環境の準備 4. コンペの推進 5. 技術の調査 6. 振り返り

とある平日

• 仕事で分析しながら、 早く家に帰って分析したいと思う日々。。。

興味持った方は是非試しにやってみてください! 嵌りすぎて寝不足になってしまったらすみませんw

Kaggleで磨く機械学習の実践力 ―実務xコンペが鍛えたプロの手順

- ・ 出版社: リックテレコム
- B5変型判 376ページ
- 定価:3,300円(税込)
- ISBN:978-4-86594-326-9
- 2022年5月23日刊行
- 諸橋政幸 著

■本書の主な内容

第I部 分析実務とKaggle

第1章 実務に必要なスキルとは

第2章 Kaggleの概要

第3章 Kaggleを学習ツールに

第||部 機械学習の進め方

第4章 ベースライン作成

第5章 特徴量エンジニアリング

第6章 モデルチューニング

第Ⅲ部 実践例

第7章 2値分類のコンペ

第8章 回帰問題のコンペ

第9章 データサイエンティストの未来

