IT業界コンテナの ビジネス価値と背景

日本IBM株式会社 テクノロジー事業本部 Hybrid Cloud CTO 高良 真穂

IBMの歩み

IBMは、社会や技術の変化を捉えて、変革を続け、 お客様と伴に、100年の歴史を作ってきた。

メインフレームからオープンシステムへ

COBOLからJavaへ

オンプレからクラウドへ

コンテナとハイブリッド クラウドへ

© 2021 IBM Corporation

IBMのコンテナに関する取組

サービス

お客様のデジタル変革の実現、 アプリケーションのモダナイゼーション、 各ビジネスプロセスでの AI 活用

システム・ インテグレーター との協業

オープンな ハイブリッド クラウドと AIの推進

ソフトウェア IBM Cloud Paks

自動化、データ&AI、統合、ネットワーク、 セキュリティー、業界別ソリューション

ហំវិ

(2)コンテナ化されたミドルウェア群

ソリューション・ パートナー との協業

オープンな エコシステム の拡大

ハイブリッドクラウド・プラットフォーム

セキュアな開発・運用

(1)企業向けKubernetes

IBM クラウド

他社クラウド AWS . Azure . Others

IBM システムズ

企業向け各種基盤

エッジ

(p)

IT人財の 育成と強化、 ダイバー シティー

(3) IBM以外のクラウドやサーバーを含む複合環境

The DX Forum

© 2021 IBM Corporation

コンテナ共創センター開設(2021年4月1日 開設)

日本のDX推進に不可欠となるコンテナ技術のさらなる普及に向け、オープン・ハイブリッドクラウドを推進する IBMとパートナー様との共創により、システム・インテグレーター、 ISVのソリューションのコンテナ化を推進します。

Open

クラウドベンダーにロックインされない オープンなコンテナを開発

Hybrid

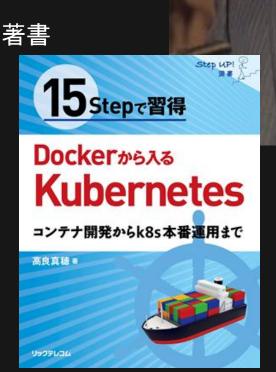
プライベート/パブリッククラウドを 凌駕するハイブリッドなコンテナを作成

Enterprise

エンタープライズ・グレードのインダストリー向けコンテナの開発

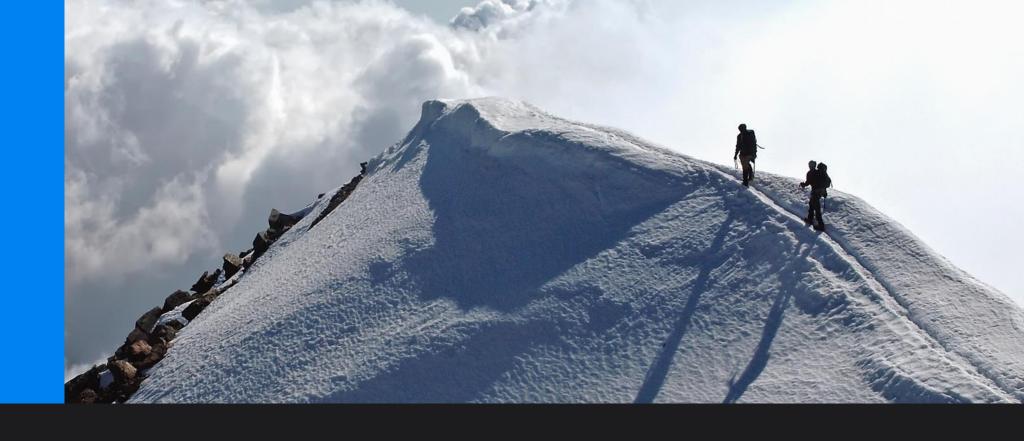
- ・ クラウドネイティブ・エンジニアによる**技術アドバイス**の提供
- コンテナ共創のための最新のコンテナ・プラットフォームを提供
- コンテナ共創のための共同コミュニティの提供

「コンテナ共創センター」への参加お申し込みはコチラ!


https://www.ibm.com/jp-ja/partnerworld/resources/container-cocreation-center

自己紹介

所属 日本アイ・ビー・エム株式会社 テクノロジー事業本部 Hybrid Cloud CTO


高良 真穂

コンテナ / Kubernetes / OpenShiftの 利用価値を理解し活用してもらうため、 エンジニア育成、お客様へのご進講、 執筆活動を推進しています。

韓国語に 翻訳され ました

なぜいま、コンテナに取り組むべきか? その理由と価値

その理由#1

OSS活用が普及

ITイノベーションはOSSから起きる

ロボット

:::ROS

https://www.ros.org/

Browse Software

News

Download

ardware abstraction, device drivers, libraries, visualizers, message-passing, package management, and more. ROS is

Available Translations: German | Spanish | French | Italian | Japanese | Korean | Brazilian Portuguese | Portuguese

An introduction to what is ROS

自動運転OSS

https://www.autoware.auto/

The next generation Autoware, built on ROS 2 and following best practices and standards to be high quality and easier to certify. The source code for Autoware. Auto currently lives here.

ドローン用OSS

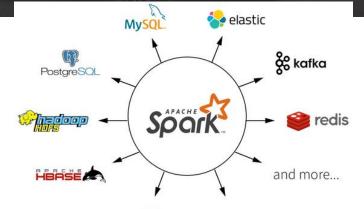
ABOUT PROIECTS COMMUNITY BLO

Learn about various concepts, client libraries, and technical overview of ROS

https://www.dronecode.org/

We are setting the standards in the drone industry with open-source.

ation fosters communities and innovation through open-standards using de is a **vendor-neutral foundation** for open source drone projects. We are a ofit under the Linux Foundation and provide open source governance,


BECOME A MEMBER

Open Source Projects

人工知能技術

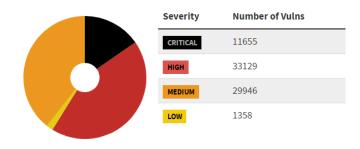
https://www.tensorflow.org/

OSSの脅威は脆弱性

- ・脆弱性とは
 - プログラム中で意図せずに出来てしまったセキュリティホール
 - 脆弱性調査と対策が継続され、発見されると登録
 - CVEによって、業界横断で一意にIDが決められる
 - NVDによって、重要度評価と詳細が公開される
 - ゼロディ攻撃
 - CVE/NVD が公表されてベンダーが修正を出すまでの間に攻撃
- Red Hatによる脆弱性対応
 - 業界をリードするセキュリティ脆弱性対応
 - Red Hatとパートナー企業による修正プログラム開発、配布
 - https://access.redhat.com/security/security-updates/

脆弱性データベース(NVD)

https://nvd.nist.gov/general/nvd-dashboard


NVD Dashboard

CVEs Received and Processed

3月**11** 時点

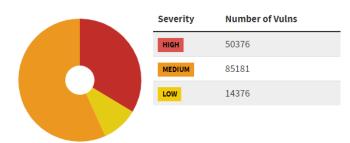
	Time Period	New CVEs Received by NVD	New CVEs Analyzed by NVD	Modified CVEs Received by NVD	Modified CVEs Re- analyzed by NVD
	Today	0	0	0	0
	This Week	225	158	83	75
	This Month	499	429	207	277
	Last Month	1445	1473	809	699
	This Year	3469	3395	1878	1227

CVSS V3 Score Distribution

脆弱性は 過去良かったから 現在は大丈夫とは 言えない

約3ヵ月の累計

CVE Status Count


Total	159278
Received	12
Awaiting Analysis	4
Undergoing Analysis	552
Modified	75511
Rejected	9056

Last 20 Scored Vulnerability IDs & Summaries

NVD Contains

CVE Vulnerabilities	159278		
Checklists	538		
US-CERT Alerts	249		
US-CERT Vuln Notes	4487		
OVAL Queries	10286		
CPE Names	621017		

CVSS V2 Score Distribution

CVSS Severity

アプリが利用するOSSライブラリは膨

-高機能の裏には膨大な積み重ねがある

アプリの動作に 必要なSWの スタック

アプリケーション

PHP/Ruby/Python /Java/Node

ミドルウェア (設定ファイル) (SWパッケージ)

SWパッケージ

OSカーネル

config(nginx) = 1:1.10.2-1.el7

libc.so.6(GLIBC 2.3)(64bit)

libc.so.6(GLIBC 2.3.4)(64bit)

libcrypto.so.10(OPENSSL 1.0.1 EC)(64bit) libcrypto.so.10(libcrypto.so.10)(64bit)

libdl.so.2()(64bit)

libdl.so.2(GLIBC 2.2.5)(64bit) libpcre.so.1()(64bit)

libprofiler.so.0()(64bit) libpthread.so.0()(64bit)

libpthread.so.0(GLIBC 2.2.5)(64bit)

libssl.so.10()(64bit) libssl.so.10(libssl.so.10)(64bit)

libz.so.1()(64bit)

nginx-all-modules = 1:1.10.2-1.el7 nginx-filesystem

nginx-filesystem = 1:1.10.2-1.el7

openssl

rpmlib(CompressedFileNames) <= 3.0.4-1 rpmlib(FileDigests) <= 4.6.0-1 rpmlib(PavloadFilesHavePrefix) <= 4.0-1

rtld(GNU HASH) systemd

libc.so.6()(64bit)

libc.so.6(GLIBC 2.10)(64bit libc.so.6(GLIBC 2.14)(64bit)

libc.so.6(GLIBC 2.2.5)(64bit

libc.so.6(GLIBC 2.3.2)(64bit)

libc.so.6(GLIBC 2.4)(64bit)

libc.so.6(GLIBC 2.7)(64bit)

libm.so.6()(64bit) libm.so.6(GLIBC_2.2.5)(64bit) libnsl.so.1()(64bit)

libpcre.so.1()(64bit)

libresolv.so.2()(64bit)

libresolv.so.2(GLIBC 2.2.5)(64bit)

php-cli(x86-64) = 5.4.16-42.el7

rpmlib(FileDigests) <= 4.6.0-1 rpmlib(PayloadFilesHavePrefix) <= 4.0-1 rpmlib(CompressedFileNames) <= 3.0.4-1

libcrypto.so.10(libcrypto.so.10)(64bit) libcrypto.so.10(OPENSSL_1.0.1)(64bit)

libbz2.so.1()(64bit) libcom err.so.2()(64bit) libcrypto.so.10()(64bit)

libcrypt.so.1()(64bit) libc.so.6()(64bit) libc.so.6(GLIBC 2.11)(64bit) libc.so.6(GLIBC 2.14)(64bit) libc.so.6(GLIBC 2.15)(64bit) DC.S 1 (GLBC _2.3)(64bit)

libc.so.6(GLIBC 2.4)(64bit libc.so.6(GLIBC_2.7)(64bit)

libc.so.6(GLIBC 2.8)(64bit)

libdl.so.2(GLIBC 2.2.5)(64bit)

libgssapi_krb5.so.2()(64bit)

libk5crypto.so.3()(64bit)

libdl.so.2()(64bit)

libgmp.so.10()(64bit)

libkrb5.so.3()(64bit)

librt.so.1()(64bit) libssl.so.10()(64bit)

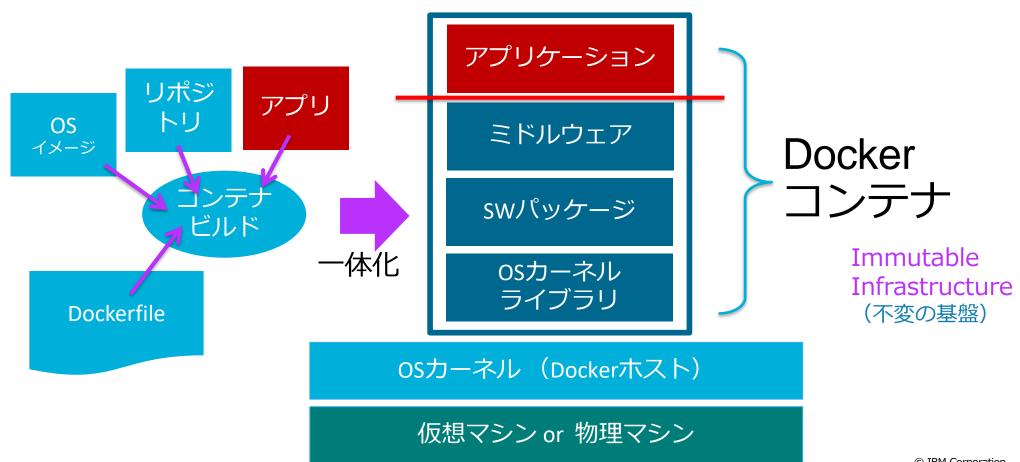
libssl.so.10(libssl.so.10)(64bit)

libxml2.so.2()(64bit)

libxml2.so.2(LIBXML2 2.4.30)(64bit)

libxml2.so.2(LIBXML2 2.5.2)(64bit) libxml2.so.2(LIBXML2 2.6.0)(64bit)

libxml2.so.2(LIBXML2 2.6.11)(64bit) libxml2.so.2(LIBXML2 2.6.5)(64bit)

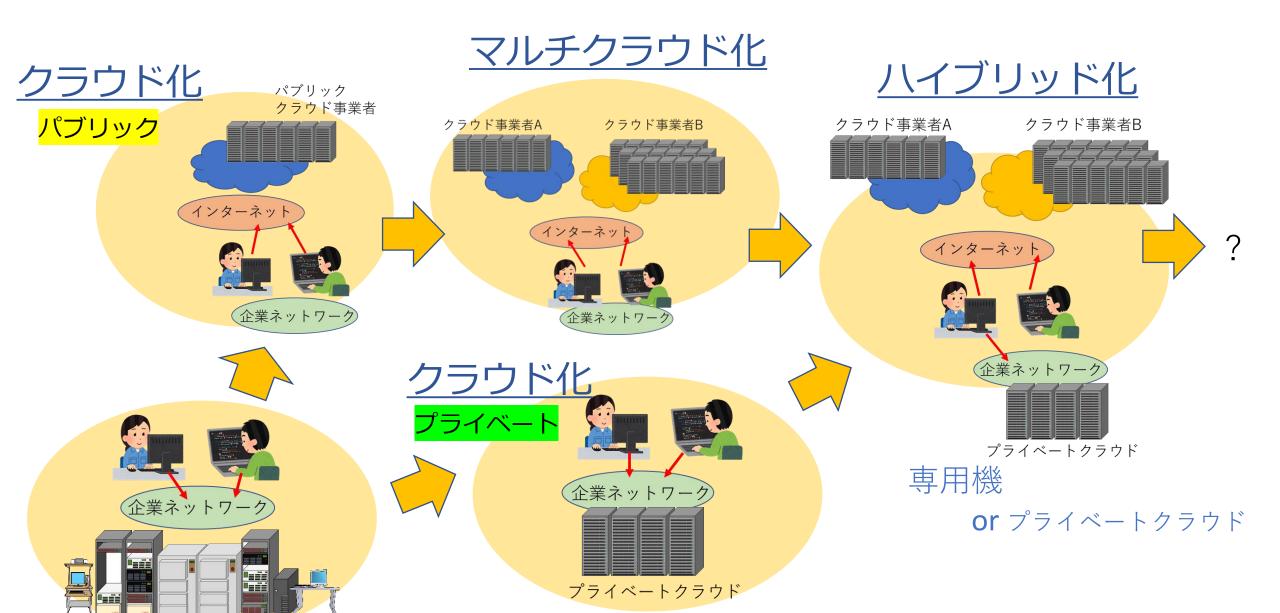

libxml2.so.2(LIBXML2 2.9.0)(64bit)

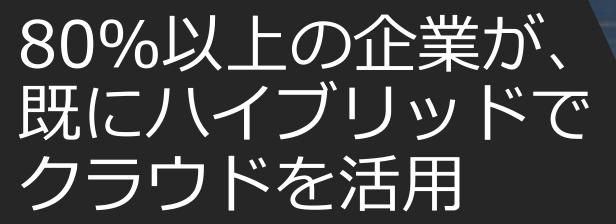
libz.so.1()(64bit) rtld(GNU HASH)

rpmlib(PayloadIsXz) <= 5.2-1

コンテナは、アプリの不変の実行基盤

- 変更が発生したら、ビルドからやり直して、コンテナまるごと入れ替える
- 更新作業が簡単になり、停止時間削減と品質改善に貢献する




その理由#2

ハイブリッド
クラウド利用

クラウド利用の中心はハイブリッド

RESEARCH REPORT
2019 STATE OF THE CLOUD REPORT: SEE THE LATEST CLOUD
TRENDS

https://info.flexerasoftware.com/SLO-WP-State-of-the-Cloud-2019?campaign=7010g0000016JiA

ハイブリッド採用の理由

機敏性

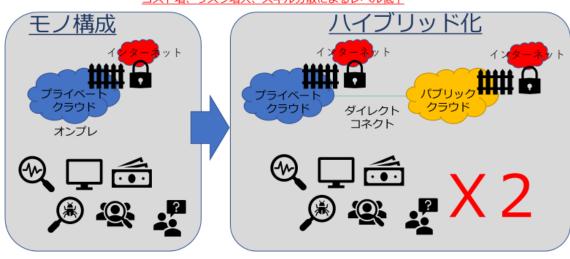
素早く革新するために必要な柔軟性

ベンダーロックイン回避

一社のクラウドの機能に縛られない 価格競争により調達コストを下げる

可用性

繁忙期対応(クラウドバースト対応) 障害対策と災害対策

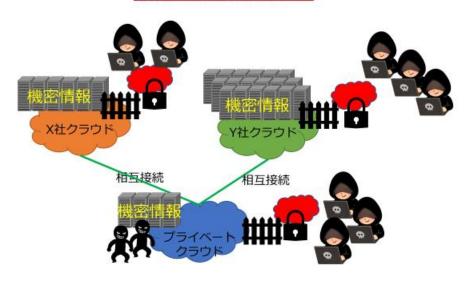

コンプライアンス&セキュリティ

地理的に近いデータセンターを持つクラウドを使用 GDPR準拠のためEU地域のクラウドが簡単な解決策

ハイブリッド活用の課題は?

課題1 アプリ基盤が複雑化し、様々な問題の元凶

コスト増、リスク増大、スキル分散によるレベル低下

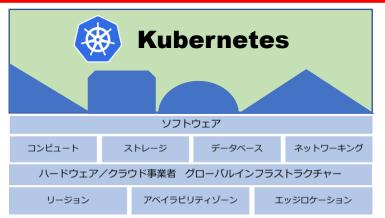

課題2ビジネスの機敏性に悪影響とコスト増

アプリごとにサイロ化してクラウドが導入される恐れ

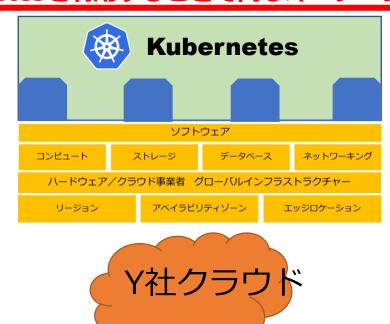
課題3 セキュリティ防御ラインは複数にまたがる

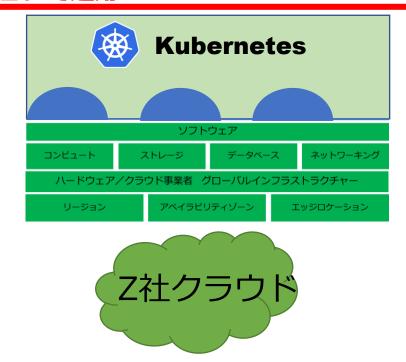
守りを固めるのが困難になる恐れ

ビジネスの要請であり 負担が増えるが 避けられない!

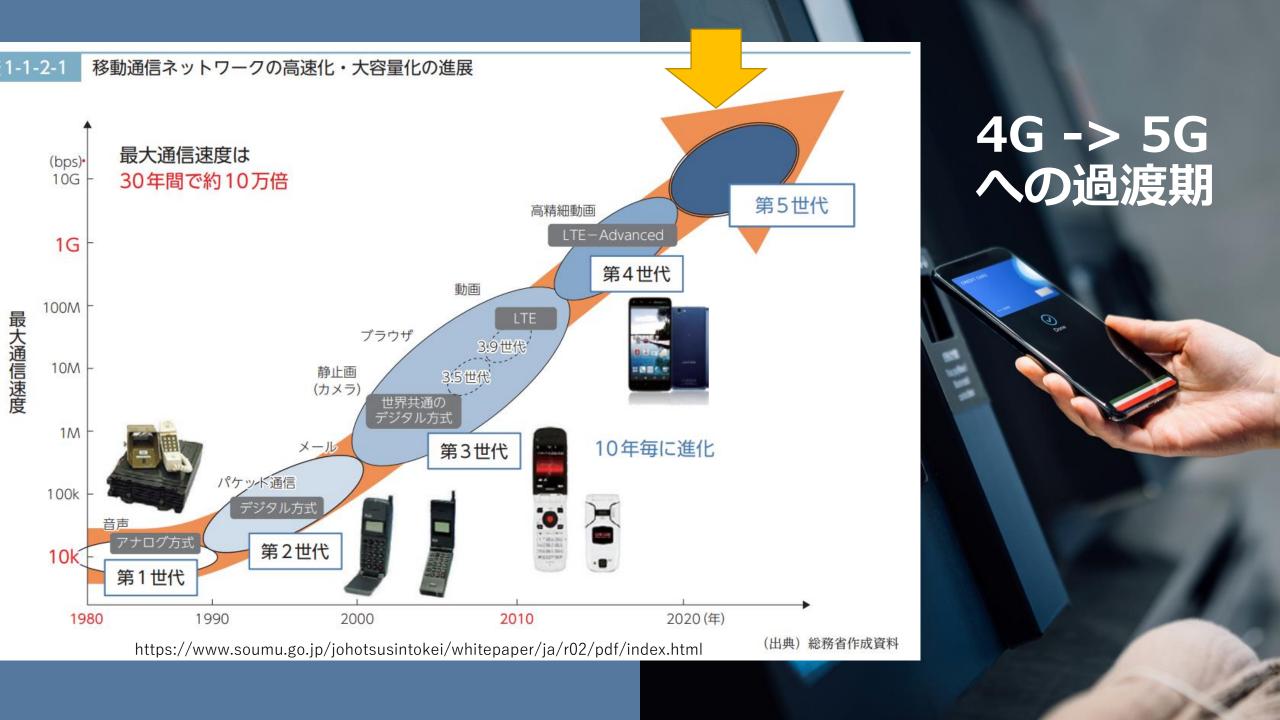

Kubernetes コンテナオーケストレーター クラウド時代の第二のOS

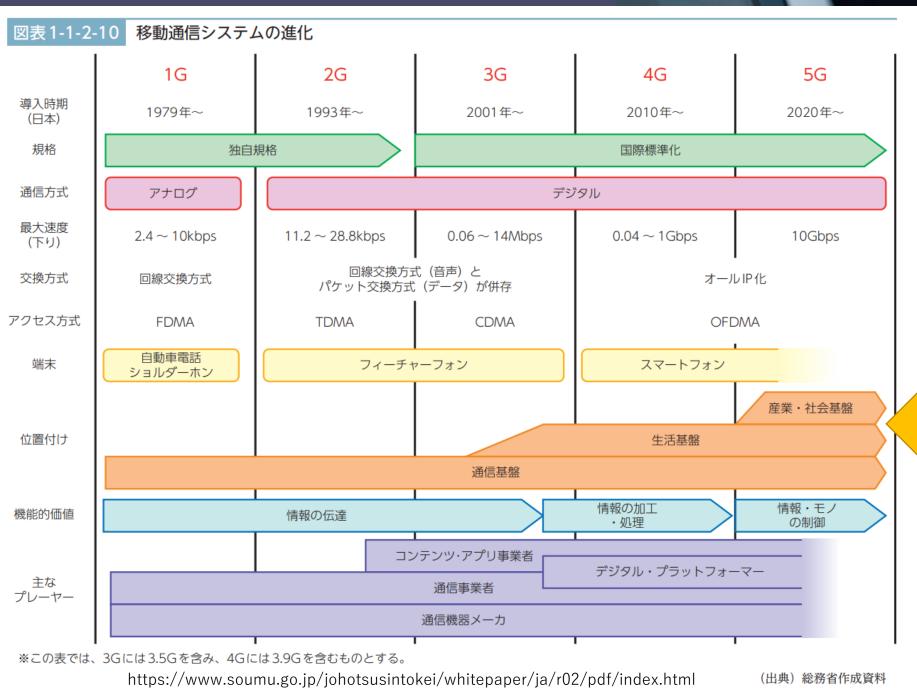
と比喩


Kubernetesは基盤の違いを吸収して共通化

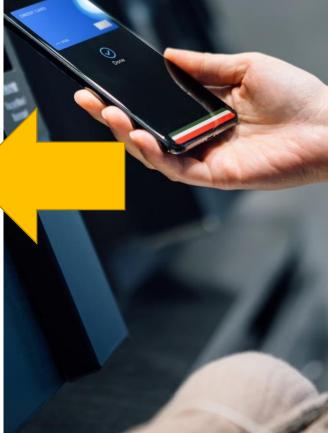


Kubernetesを利用することで同じオペレーションで運用





その理由#3


IR4に乗り遅れるな! ビジネスチャンスを掴め

モバイルは 社会基盤へ と変化する

図表 1-1-3-2 IoT時代のICT基盤である 5G

8動体無線技術の 高速・大容量化路線 2G 3G LTE/4G 5G 1993年 2001年 2010年 2020年

超高速

現在の移動通信システムより 100倍速いブロードバンドサー ビスを提供

⇒ 2時間の映画を3秒でダウンロード (LTEは5分)

超低遅延

利用者が遅延(タイムラグ)を 意識することなく、リアルタイムに遠隔地のロボット等を操 作・制御

ロボットを遠隔制御

⇒ ロボット等の精緻な操作 (LTEの10倍の精度) をリアル タイム通信で実現

多数同時接続

スマホ、PCをはじめ、身の回 りのあらゆる機器がネットに接 続

⇒ 自宅部屋内の約100個の端末・センサーがネットに接続 (LTEではスマホ、PCなど数個)

https://www.soumu.go.jp/johotsusintokei/whitepaper/ja/r02/pdf/index.html

(出典) 総務省作成資料

社会的

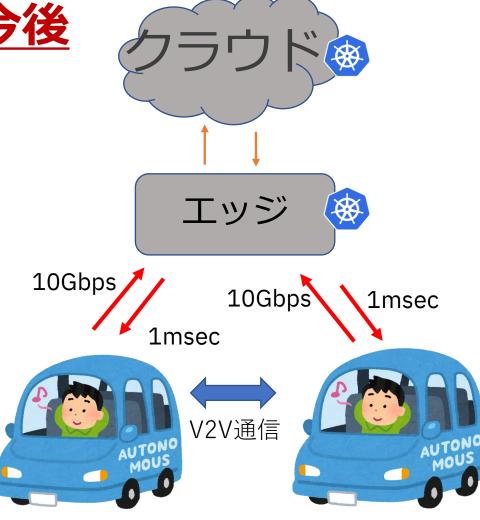
な

5Gによって 社会基盤に進化

同時接続

5Gの特性を生かす上でエッジは必須の存在 クラウドと連携することで新たな価値創出

これまで


10Gbps x?

5G IoT デバイス

IT業界コンテナのビジネス価値と背景 まとめ

OSSで低価格/高性能/高速開発を実現

しかし、OSSで基盤とするのは砂の上に城を築くかの如く 流動的なソフトウェアスタック 脆弱性の発見と対策

この問題を解決するためにコンテナが普及

ハイブリッド利用はビジネスの要求によるもの Kubernetesはハイブリッドクラウドの共通基盤となる

5Gの本格普及によって、クラウド+エッジは 社会基盤として新たなビジネスチャンス

